SlideShare a Scribd company logo
1 of 21
Download to read offline
Maria Fernanda Vergara Mendoza
          Petroleum Engineering
                  UIS-COLOMBIA
   In this chapter, you will learn some methods to find the
    roots of polynomial equations of the general form:



   Where n= the order of the polynomial; a= constant
    coefficients.
   RULES:
   For an nth-order equation, there are n real or complex
    roots.
   If n is odd, there is at least one real root
   The complex roots exsist in conjugate pairs (a+bi and
    a-bi), i=√(-1)
Muller’s   Bairstow’s
Method      Method
   The Muller’s method, is like the secant method, just that
    this one projects a parabola through three points unlike
    secant method, who projects a straight line.
   This method consists of deriving the coefficients of the
    parabola that goes through the three points.
   Write the parabolic equation in this form:

              P( x) a( x xi 1 ) 2 b( x xi 1 ) c
   The coefficients a, b, and c can be evaluated by
    substituting each of the three points to give:

         f ( xi 1 )    a( xi   1   xi 1 ) 2 b( xi   1   xi 1 ) c
         f ( xi )     a( xi    xi 1 ) 2 b( xi   xi 1 ) c
         f ( xi 1 )    a( xi   1   xi 1 ) 2 b( xi   1   xi 1 ) c
   Two of the terms of f ( xi 1 ) are zero, it can be solved
    for c=f(xi+1).

     f ( xi 1 )     f ( xi 1 )         a ( xi   1   xi 1 ) 2 b( xi   1           xi 1 )
     f ( xi )     f ( xi 1 )       a ( xi       xi 1 ) 2 b( xi   xi 1 )
   Using algebraic manipulations, we solve the remaining
    coefficients:
                  hi 1   xi     xi 1
                          hi            xi      1   xi
                                             f ( xi )      f ( xi        1   )
                               i   1
                                                  xi       xi 1
                                         f ( xi 1 )        f ( xi )
                               i
                                              xi 1         xi
   These can be substituted to give:
    (hi 1 hi )b (hi 1 hi ) 2 a hi 1 i 1 hi i
           2
    hi b hi a     hi   i


   The results can be summarized as
       i        i 1
a                                   b        ahi     i         c   f ( xi 1 )
      hi   hi    1

   Once you know the approximate coefficients you have
    to find the approximated root using the quadratic
    equation :
                                                         2c
                           xi   2       xi   1
                                                 b   b 2 4ac
   The error can be calculated as:




   There is a problem with xi 2 equation, this equation
    yields two roots, in this method the sign is chosen with
    this strategies:
   1. If only real roots are being located, we choose the
    two original points that are nearest the new root
    estimate, xi+2 .
   If both real and complex roots are being evaluated, a
    sequential approach is employed. That means: xi, xi+1,
    xi+2 take the place of xi-1, xi, xi+1
If you have as initial values xi 1 4.5 xi       5 .5   xi   1   5
respectively, find the root of the equation:

                         f ( x)   x 3 13x 12

 FIRST: Evalue the equation in its initial values



                           f (4.5) 20.625
                           f (5.5) 82.875
                           f (5) 48
SECOND: This values are used to calculate:


                    hi   1        5 . 5 4 .5 1
                    hi       5 5 .5        0 .5
                                  82.875 20.625
                     i 1                              62.25
                                     5 . 5 4 .5
                                 48 82.875
                     i                          69.75
                                   5 5.5
THIRD: Find the a, b, c coefficients:

                               69.75 62.25
                             a               15
                                   0 .5 1
                             b 15( 0.5) 69.75 62.75
                             c     28
2(48)
                xi   2       5                3.976487
                               62.25 31.54451
The error is:

                                   1.023513
                         a                 100%          25.74
                                  3.976487

This is a huge error, so its necesary to do other iterations:

                         xi   1   5 .5   xi   5 xi   1   3.976487
Repeat the calculations and get a low percent of error:

                Iteration                     Xr                 Ea%
                         0                    5                  --
                         1               3.976487            25.74
                         2                4.00105            0.6139
                         3                    4              0.0262
                         4                    4            0.0000119
   Is an iterative approach related loosely to both the
    Muller and Newton Raphson methods.
   It is based on the idea of synthetic division of the
    given polynomial by a quadratic function and can
    be used to find all the roots of a polynomial.
   The idea is to do a synthetic division of the
    polynomial Pn(x) by the quadratic factor (x2 - rx -
    s).
   The synthetic division can be extended to quadratic
    factors:
        Pn ( x) ( x 2 rx s)Qn 2 ( x) R
                  x 2 rx s bn x n 2 bn 1 x n                 3
                                                                 ... b3 x b2           residue
      residue b1 ( x r ) ... b0

   When you multiply and match factors have:
                   an       bn   1                               bn       an
                   an   1    bn      1   rbn                     bn   1    an   1   rbn
                   an   2    bn      2   rbn   1   sbn           bn   2    an   2     rbn   1   sbn
                   an   3    bn      3   rbn   2   sbn   1       bn   3    an   3     rbn   2   sbn   1

                   :                                             :
                   a1       b1 rb2         sb3                   b1       a1 rb2       sb3
                   a0       b0       rb1 sb2                     b0       a0    rb1     sb2
   The idea is to find values of r and s, making
    b1 and b0 zero.
    The method works taking an initial
    approach (r0, s0) and getting better
    approaches (rk, sk), this is an iterative
    procedure, the process ends when the
    residue of dividing the polynomial by (x2 -
    rkx - sk) its zero.
   B1=f(s, r)
   B0=g(s, r)
   Because both bo and b1 are functions of both r and s,
    they can be expanded using a Taylor series:
                                            b1      b1
                   b1 (r   r, s    s ) b1      r        s
                                            r       s
                                            b0       b0
                   b0 (r   r, s    s ) b0       r         s
                                             r       s
   The changes, Δr and Δs, can be estimated by setting the
    expansion equal to zero:
                                       b1      b1
                                  b1      r       s
                                       r       s
                                       b0      b0
                                  b0       r       s
                                        r       s
   “If the partial derivatives of the b’s can be determined,
    these are a system of two equations that can be solved
    simultaneously for the two unknowns, Δr and Δs.”
   According to Bairstow, the partial derivatives can be
    obtained by a synthetic division of the b’s.

                   cn       bn
                   cn   1    bn   1   rcn
                   cn   2    bn   2   rcn   1    scn
                   :
                   cn   k    bn   k   rcn   ( k 1)     scn   ( k 2)
b1     b2      b         b1     b2      b
               r    b2 s 3    c2        r    b3 s 3    c3
          r      r        r         s      s       s
          b0     b       b         b0     b       b
               r 1 b1 s 2     c1        r 0 b2 s 2     c2
           r      r      r         s      s       s


   Then the system of equations can be written
    as:

                      c2 r c3 s             b1
                      c1 r c2 s             b0
   APPROXIMATED ERROR
                         r                 s
                 a ,r      .100%    a,s      .100%
                        r                 s

   When both of these error estimates fall below a
    stopping criterion, the values of the roots can be
    determined by:
                              r    r 2 4s
                           x
                                   2
   Employ Bairstow’s method to determine the roots of the
    polynomial
           f 5 ( x)   x5 3.5x 4 2.75x3 2.125x 2 3.875x 1.25
 Use initial guesses of r=s=-1 and iterate to a level of tolerance
  of 1%
SOLUTION:
 b5=1          b4=-4.5    b3=6.25    b2=0.375       b1=-10.5
  b0=11.375
 c5=1      c4=-5.5    c3=10.75 c2=-4.875         c1=-16.375
Thus, the simultaneous equations to solve Δr and Δs are:

                       4.875 r 10.75 s 10.5
                       16.375 r 4.875 s   11.375
   Which can be solved for Δr=0.3558 and Δs=1.1381.
   r=-0.6442
   S=0.1381
   And the approximate errors are:
            0.3558                           1.1381
     a ,r           .100% 55.23%       a,s          .100% 824.1%
             0.6442                          0.1381

   The computation can be continued with the result that
    after four iterations the metod converges on velues of
    r=-0.5 and s=0.5
                        0.5   ( 0.5) 2 4(0.5)
                   x                            0.5, 1
                                 2
   CHAPRA, Steven C. “Numerical methods for
    engineers”, Fifth edition. Mc Graw Hill.
   CARRILLO, Eduardo. “Raices de polinomios”.
    PPT.

More Related Content

What's hot

2.2 graphs of first degree functions t
2.2 graphs of first degree functions t2.2 graphs of first degree functions t
2.2 graphs of first degree functions tmath260
 
2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functions2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functionsmath260
 
19 more parabolas a& hyperbolas (optional) x
19 more parabolas a& hyperbolas (optional) x19 more parabolas a& hyperbolas (optional) x
19 more parabolas a& hyperbolas (optional) xmath260
 
Notes parabolas
Notes   parabolasNotes   parabolas
Notes parabolasLori Rapp
 
Graphs of the Sine and Cosine Functions Lecture
Graphs of the Sine and Cosine Functions LectureGraphs of the Sine and Cosine Functions Lecture
Graphs of the Sine and Cosine Functions LectureFroyd Wess
 
5 2 solving 2nd degree equations
5 2 solving 2nd degree equations5 2 solving 2nd degree equations
5 2 solving 2nd degree equationsmath123b
 
2 graphs of first degree functions x
2 graphs of first degree functions x2 graphs of first degree functions x
2 graphs of first degree functions xTzenma
 
Graphing trigonometric functions
Graphing trigonometric functionsGraphing trigonometric functions
Graphing trigonometric functionsLeo Crisologo
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Fatini Adnan
 
Class xii practice questions
Class xii practice questionsClass xii practice questions
Class xii practice questionsindu psthakur
 
4 6 radical equations-x
4 6 radical equations-x4 6 radical equations-x
4 6 radical equations-xmath123b
 
8 sign charts of factorable formulas y
8 sign charts of factorable formulas y8 sign charts of factorable formulas y
8 sign charts of factorable formulas ymath260
 
13 graphs of factorable polynomials x
13 graphs of factorable polynomials x13 graphs of factorable polynomials x
13 graphs of factorable polynomials xmath260
 
11 equations of planes
11 equations of planes11 equations of planes
11 equations of planesmath267
 
5 3 the graphs of quadratic equations
5 3 the graphs of quadratic equations5 3 the graphs of quadratic equations
5 3 the graphs of quadratic equationsmath123b
 
Linear ineqns. and statistics
Linear ineqns. and statisticsLinear ineqns. and statistics
Linear ineqns. and statisticsindu psthakur
 
Lesson 22: Quadratic Forms
Lesson 22: Quadratic FormsLesson 22: Quadratic Forms
Lesson 22: Quadratic FormsMatthew Leingang
 

What's hot (19)

2.2 graphs of first degree functions t
2.2 graphs of first degree functions t2.2 graphs of first degree functions t
2.2 graphs of first degree functions t
 
2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functions2.2 Graphs of First Degree Functions
2.2 Graphs of First Degree Functions
 
19 more parabolas a& hyperbolas (optional) x
19 more parabolas a& hyperbolas (optional) x19 more parabolas a& hyperbolas (optional) x
19 more parabolas a& hyperbolas (optional) x
 
Notes parabolas
Notes   parabolasNotes   parabolas
Notes parabolas
 
Graphs of the Sine and Cosine Functions Lecture
Graphs of the Sine and Cosine Functions LectureGraphs of the Sine and Cosine Functions Lecture
Graphs of the Sine and Cosine Functions Lecture
 
5 2 solving 2nd degree equations
5 2 solving 2nd degree equations5 2 solving 2nd degree equations
5 2 solving 2nd degree equations
 
2 graphs of first degree functions x
2 graphs of first degree functions x2 graphs of first degree functions x
2 graphs of first degree functions x
 
Graphing trigonometric functions
Graphing trigonometric functionsGraphing trigonometric functions
Graphing trigonometric functions
 
Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)Additional Mathematics form 4 (formula)
Additional Mathematics form 4 (formula)
 
Chapter 1 straight line
Chapter 1 straight lineChapter 1 straight line
Chapter 1 straight line
 
Parabola
ParabolaParabola
Parabola
 
Class xii practice questions
Class xii practice questionsClass xii practice questions
Class xii practice questions
 
4 6 radical equations-x
4 6 radical equations-x4 6 radical equations-x
4 6 radical equations-x
 
8 sign charts of factorable formulas y
8 sign charts of factorable formulas y8 sign charts of factorable formulas y
8 sign charts of factorable formulas y
 
13 graphs of factorable polynomials x
13 graphs of factorable polynomials x13 graphs of factorable polynomials x
13 graphs of factorable polynomials x
 
11 equations of planes
11 equations of planes11 equations of planes
11 equations of planes
 
5 3 the graphs of quadratic equations
5 3 the graphs of quadratic equations5 3 the graphs of quadratic equations
5 3 the graphs of quadratic equations
 
Linear ineqns. and statistics
Linear ineqns. and statisticsLinear ineqns. and statistics
Linear ineqns. and statistics
 
Lesson 22: Quadratic Forms
Lesson 22: Quadratic FormsLesson 22: Quadratic Forms
Lesson 22: Quadratic Forms
 

Similar to Roots of polynomials

chapter1_part2.pdf
chapter1_part2.pdfchapter1_part2.pdf
chapter1_part2.pdfAliEb2
 
Irrational numbers
Irrational numbersIrrational numbers
Irrational numbersTarun Gehlot
 
Binomial Theorem
Binomial TheoremBinomial Theorem
Binomial Theoremitutor
 
7.curves Further Mathematics Zimbabwe Zimsec Cambridge
7.curves   Further Mathematics Zimbabwe Zimsec Cambridge7.curves   Further Mathematics Zimbabwe Zimsec Cambridge
7.curves Further Mathematics Zimbabwe Zimsec Cambridgealproelearning
 
Quadratic equations
Quadratic equationsQuadratic equations
Quadratic equationsA M
 
Modul penggunaan kalkulator sainstifik sebagai ABM dalam Matematik
Modul penggunaan kalkulator sainstifik sebagai ABM dalam MatematikModul penggunaan kalkulator sainstifik sebagai ABM dalam Matematik
Modul penggunaan kalkulator sainstifik sebagai ABM dalam MatematikNorsyazana Kamarudin
 
quadraticequations-111211090004-phpapp02 (2).pdf
quadraticequations-111211090004-phpapp02 (2).pdfquadraticequations-111211090004-phpapp02 (2).pdf
quadraticequations-111211090004-phpapp02 (2).pdfAngelle Pantig
 
Tutorial 1(julai2006)
Tutorial 1(julai2006)Tutorial 1(julai2006)
Tutorial 1(julai2006)wsf6276
 
April 13, 2015
April 13, 2015April 13, 2015
April 13, 2015khyps13
 
Linearprog, Reading Materials for Operational Research
Linearprog, Reading Materials for Operational Research Linearprog, Reading Materials for Operational Research
Linearprog, Reading Materials for Operational Research Derbew Tesfa
 
presentation_quadraticequations-111211090004-phpapp02_1524500815_313961.pptx
presentation_quadraticequations-111211090004-phpapp02_1524500815_313961.pptxpresentation_quadraticequations-111211090004-phpapp02_1524500815_313961.pptx
presentation_quadraticequations-111211090004-phpapp02_1524500815_313961.pptxDeepNavi2
 
Graphing quadratic equations
Graphing quadratic equationsGraphing quadratic equations
Graphing quadratic equationsswartzje
 
quadraticequations-111211090004-phpapp02 (1).pdf
quadraticequations-111211090004-phpapp02 (1).pdfquadraticequations-111211090004-phpapp02 (1).pdf
quadraticequations-111211090004-phpapp02 (1).pdfNehaJain840096
 
logarithmic, exponential, trigonometric functions and their graphs.ppt
logarithmic, exponential, trigonometric functions and their graphs.pptlogarithmic, exponential, trigonometric functions and their graphs.ppt
logarithmic, exponential, trigonometric functions and their graphs.pptYohannesAndualem1
 
Anderson M conics
Anderson M conicsAnderson M conics
Anderson M conicsMrJames Kcc
 
Single Variable Calculus Assignment Help
Single Variable Calculus Assignment HelpSingle Variable Calculus Assignment Help
Single Variable Calculus Assignment HelpMath Homework Solver
 

Similar to Roots of polynomials (20)

chapter1_part2.pdf
chapter1_part2.pdfchapter1_part2.pdf
chapter1_part2.pdf
 
Irrational numbers
Irrational numbersIrrational numbers
Irrational numbers
 
Binomial Theorem
Binomial TheoremBinomial Theorem
Binomial Theorem
 
7.curves Further Mathematics Zimbabwe Zimsec Cambridge
7.curves   Further Mathematics Zimbabwe Zimsec Cambridge7.curves   Further Mathematics Zimbabwe Zimsec Cambridge
7.curves Further Mathematics Zimbabwe Zimsec Cambridge
 
Quadratic equations
Quadratic equationsQuadratic equations
Quadratic equations
 
Modul penggunaan kalkulator sainstifik sebagai ABM dalam Matematik
Modul penggunaan kalkulator sainstifik sebagai ABM dalam MatematikModul penggunaan kalkulator sainstifik sebagai ABM dalam Matematik
Modul penggunaan kalkulator sainstifik sebagai ABM dalam Matematik
 
quadraticequations-111211090004-phpapp02 (2).pdf
quadraticequations-111211090004-phpapp02 (2).pdfquadraticequations-111211090004-phpapp02 (2).pdf
quadraticequations-111211090004-phpapp02 (2).pdf
 
Binomial theorem
Binomial theorem Binomial theorem
Binomial theorem
 
Tutorial 1(julai2006)
Tutorial 1(julai2006)Tutorial 1(julai2006)
Tutorial 1(julai2006)
 
Es272 ch3b
Es272 ch3bEs272 ch3b
Es272 ch3b
 
April 13, 2015
April 13, 2015April 13, 2015
April 13, 2015
 
Linearprog, Reading Materials for Operational Research
Linearprog, Reading Materials for Operational Research Linearprog, Reading Materials for Operational Research
Linearprog, Reading Materials for Operational Research
 
presentation_quadraticequations-111211090004-phpapp02_1524500815_313961.pptx
presentation_quadraticequations-111211090004-phpapp02_1524500815_313961.pptxpresentation_quadraticequations-111211090004-phpapp02_1524500815_313961.pptx
presentation_quadraticequations-111211090004-phpapp02_1524500815_313961.pptx
 
Graphing quadratic equations
Graphing quadratic equationsGraphing quadratic equations
Graphing quadratic equations
 
QUADRATIC.pptx
QUADRATIC.pptxQUADRATIC.pptx
QUADRATIC.pptx
 
quadraticequations-111211090004-phpapp02 (1).pdf
quadraticequations-111211090004-phpapp02 (1).pdfquadraticequations-111211090004-phpapp02 (1).pdf
quadraticequations-111211090004-phpapp02 (1).pdf
 
logarithmic, exponential, trigonometric functions and their graphs.ppt
logarithmic, exponential, trigonometric functions and their graphs.pptlogarithmic, exponential, trigonometric functions and their graphs.ppt
logarithmic, exponential, trigonometric functions and their graphs.ppt
 
Anderson M conics
Anderson M conicsAnderson M conics
Anderson M conics
 
THE BINOMIAL THEOREM
THE BINOMIAL THEOREM THE BINOMIAL THEOREM
THE BINOMIAL THEOREM
 
Single Variable Calculus Assignment Help
Single Variable Calculus Assignment HelpSingle Variable Calculus Assignment Help
Single Variable Calculus Assignment Help
 

More from Maria Fernanda

Estudios de-casos-internacionales-de-ciudades-inteligentes-medellin-colombia
Estudios de-casos-internacionales-de-ciudades-inteligentes-medellin-colombiaEstudios de-casos-internacionales-de-ciudades-inteligentes-medellin-colombia
Estudios de-casos-internacionales-de-ciudades-inteligentes-medellin-colombiaMaria Fernanda
 
Smart cities a lesson from barcelona
Smart cities a lesson from barcelonaSmart cities a lesson from barcelona
Smart cities a lesson from barcelonaMaria Fernanda
 
Internet of things en las smart cities
Internet of things en las smart citiesInternet of things en las smart cities
Internet of things en las smart citiesMaria Fernanda
 
Chapter 4: Linear Algebraic Equations
Chapter 4: Linear Algebraic EquationsChapter 4: Linear Algebraic Equations
Chapter 4: Linear Algebraic EquationsMaria Fernanda
 
Chapter 3: Roots of Equations
Chapter 3: Roots of EquationsChapter 3: Roots of Equations
Chapter 3: Roots of EquationsMaria Fernanda
 
CHAPTER 2: Numerical Approximation
CHAPTER 2: Numerical ApproximationCHAPTER 2: Numerical Approximation
CHAPTER 2: Numerical ApproximationMaria Fernanda
 
Chapter 2: Numerical Approximation
Chapter 2: Numerical ApproximationChapter 2: Numerical Approximation
Chapter 2: Numerical ApproximationMaria Fernanda
 

More from Maria Fernanda (12)

Estudios de-casos-internacionales-de-ciudades-inteligentes-medellin-colombia
Estudios de-casos-internacionales-de-ciudades-inteligentes-medellin-colombiaEstudios de-casos-internacionales-de-ciudades-inteligentes-medellin-colombia
Estudios de-casos-internacionales-de-ciudades-inteligentes-medellin-colombia
 
Smart cities a lesson from barcelona
Smart cities a lesson from barcelonaSmart cities a lesson from barcelona
Smart cities a lesson from barcelona
 
Internet of things en las smart cities
Internet of things en las smart citiesInternet of things en las smart cities
Internet of things en las smart cities
 
Chapter v
Chapter vChapter v
Chapter v
 
Chapter 4: Linear Algebraic Equations
Chapter 4: Linear Algebraic EquationsChapter 4: Linear Algebraic Equations
Chapter 4: Linear Algebraic Equations
 
Roots of polynomials
Roots of polynomialsRoots of polynomials
Roots of polynomials
 
Chapter 3: Roots of Equations
Chapter 3: Roots of EquationsChapter 3: Roots of Equations
Chapter 3: Roots of Equations
 
CHAPTER 2: Numerical Approximation
CHAPTER 2: Numerical ApproximationCHAPTER 2: Numerical Approximation
CHAPTER 2: Numerical Approximation
 
Chapter 2: Numerical Approximation
Chapter 2: Numerical ApproximationChapter 2: Numerical Approximation
Chapter 2: Numerical Approximation
 
Chapter 1: Darcy's law
Chapter 1: Darcy's lawChapter 1: Darcy's law
Chapter 1: Darcy's law
 
CHAPTER 1: Modeling
CHAPTER 1: ModelingCHAPTER 1: Modeling
CHAPTER 1: Modeling
 
Chapter I
Chapter IChapter I
Chapter I
 

Roots of polynomials

  • 1. Maria Fernanda Vergara Mendoza Petroleum Engineering UIS-COLOMBIA
  • 2. In this chapter, you will learn some methods to find the roots of polynomial equations of the general form:  Where n= the order of the polynomial; a= constant coefficients.  RULES:  For an nth-order equation, there are n real or complex roots.  If n is odd, there is at least one real root  The complex roots exsist in conjugate pairs (a+bi and a-bi), i=√(-1)
  • 3. Muller’s Bairstow’s Method Method
  • 4. The Muller’s method, is like the secant method, just that this one projects a parabola through three points unlike secant method, who projects a straight line.  This method consists of deriving the coefficients of the parabola that goes through the three points.
  • 5. Write the parabolic equation in this form: P( x) a( x xi 1 ) 2 b( x xi 1 ) c  The coefficients a, b, and c can be evaluated by substituting each of the three points to give: f ( xi 1 ) a( xi 1 xi 1 ) 2 b( xi 1 xi 1 ) c f ( xi ) a( xi xi 1 ) 2 b( xi xi 1 ) c f ( xi 1 ) a( xi 1 xi 1 ) 2 b( xi 1 xi 1 ) c
  • 6. Two of the terms of f ( xi 1 ) are zero, it can be solved for c=f(xi+1). f ( xi 1 ) f ( xi 1 ) a ( xi 1 xi 1 ) 2 b( xi 1 xi 1 ) f ( xi ) f ( xi 1 ) a ( xi xi 1 ) 2 b( xi xi 1 )  Using algebraic manipulations, we solve the remaining coefficients: hi 1 xi xi 1 hi xi 1 xi f ( xi ) f ( xi 1 ) i 1 xi xi 1 f ( xi 1 ) f ( xi ) i xi 1 xi
  • 7. These can be substituted to give: (hi 1 hi )b (hi 1 hi ) 2 a hi 1 i 1 hi i 2 hi b hi a hi i  The results can be summarized as i i 1 a b ahi i c f ( xi 1 ) hi hi 1  Once you know the approximate coefficients you have to find the approximated root using the quadratic equation : 2c xi 2 xi 1 b b 2 4ac
  • 8. The error can be calculated as:  There is a problem with xi 2 equation, this equation yields two roots, in this method the sign is chosen with this strategies:  1. If only real roots are being located, we choose the two original points that are nearest the new root estimate, xi+2 .  If both real and complex roots are being evaluated, a sequential approach is employed. That means: xi, xi+1, xi+2 take the place of xi-1, xi, xi+1
  • 9. If you have as initial values xi 1 4.5 xi 5 .5 xi 1 5 respectively, find the root of the equation: f ( x) x 3 13x 12 FIRST: Evalue the equation in its initial values f (4.5) 20.625 f (5.5) 82.875 f (5) 48
  • 10. SECOND: This values are used to calculate: hi 1 5 . 5 4 .5 1 hi 5 5 .5 0 .5 82.875 20.625 i 1 62.25 5 . 5 4 .5 48 82.875 i 69.75 5 5.5 THIRD: Find the a, b, c coefficients: 69.75 62.25 a 15 0 .5 1 b 15( 0.5) 69.75 62.75 c 28
  • 11. 2(48) xi 2 5 3.976487 62.25 31.54451 The error is: 1.023513 a 100% 25.74 3.976487 This is a huge error, so its necesary to do other iterations: xi 1 5 .5 xi 5 xi 1 3.976487 Repeat the calculations and get a low percent of error: Iteration Xr Ea% 0 5 -- 1 3.976487 25.74 2 4.00105 0.6139 3 4 0.0262 4 4 0.0000119
  • 12. Is an iterative approach related loosely to both the Muller and Newton Raphson methods.  It is based on the idea of synthetic division of the given polynomial by a quadratic function and can be used to find all the roots of a polynomial.  The idea is to do a synthetic division of the polynomial Pn(x) by the quadratic factor (x2 - rx - s).
  • 13. The synthetic division can be extended to quadratic factors: Pn ( x) ( x 2 rx s)Qn 2 ( x) R x 2 rx s bn x n 2 bn 1 x n 3 ... b3 x b2 residue residue b1 ( x r ) ... b0  When you multiply and match factors have: an bn 1 bn an an 1 bn 1 rbn bn 1 an 1 rbn an 2 bn 2 rbn 1 sbn bn 2 an 2 rbn 1 sbn an 3 bn 3 rbn 2 sbn 1 bn 3 an 3 rbn 2 sbn 1 : : a1 b1 rb2 sb3 b1 a1 rb2 sb3 a0 b0 rb1 sb2 b0 a0 rb1 sb2
  • 14. The idea is to find values of r and s, making b1 and b0 zero.  The method works taking an initial approach (r0, s0) and getting better approaches (rk, sk), this is an iterative procedure, the process ends when the residue of dividing the polynomial by (x2 - rkx - sk) its zero.  B1=f(s, r)  B0=g(s, r)
  • 15. Because both bo and b1 are functions of both r and s, they can be expanded using a Taylor series: b1 b1 b1 (r r, s s ) b1 r s r s b0 b0 b0 (r r, s s ) b0 r s r s  The changes, Δr and Δs, can be estimated by setting the expansion equal to zero: b1 b1 b1 r s r s b0 b0 b0 r s r s
  • 16. “If the partial derivatives of the b’s can be determined, these are a system of two equations that can be solved simultaneously for the two unknowns, Δr and Δs.”  According to Bairstow, the partial derivatives can be obtained by a synthetic division of the b’s. cn bn cn 1 bn 1 rcn cn 2 bn 2 rcn 1 scn : cn k bn k rcn ( k 1) scn ( k 2)
  • 17. b1 b2 b b1 b2 b r b2 s 3 c2 r b3 s 3 c3 r r r s s s b0 b b b0 b b r 1 b1 s 2 c1 r 0 b2 s 2 c2 r r r s s s  Then the system of equations can be written as: c2 r c3 s b1 c1 r c2 s b0
  • 18. APPROXIMATED ERROR r s a ,r .100% a,s .100% r s  When both of these error estimates fall below a stopping criterion, the values of the roots can be determined by: r r 2 4s x 2
  • 19. Employ Bairstow’s method to determine the roots of the polynomial f 5 ( x) x5 3.5x 4 2.75x3 2.125x 2 3.875x 1.25  Use initial guesses of r=s=-1 and iterate to a level of tolerance of 1% SOLUTION:  b5=1 b4=-4.5 b3=6.25 b2=0.375 b1=-10.5 b0=11.375  c5=1 c4=-5.5 c3=10.75 c2=-4.875 c1=-16.375 Thus, the simultaneous equations to solve Δr and Δs are: 4.875 r 10.75 s 10.5 16.375 r 4.875 s 11.375
  • 20. Which can be solved for Δr=0.3558 and Δs=1.1381.  r=-0.6442  S=0.1381  And the approximate errors are: 0.3558 1.1381 a ,r .100% 55.23% a,s .100% 824.1% 0.6442 0.1381  The computation can be continued with the result that after four iterations the metod converges on velues of r=-0.5 and s=0.5 0.5 ( 0.5) 2 4(0.5) x 0.5, 1 2
  • 21. CHAPRA, Steven C. “Numerical methods for engineers”, Fifth edition. Mc Graw Hill.  CARRILLO, Eduardo. “Raices de polinomios”. PPT.